China supplier Portable Vacuum Pump for Double Cow Milking Machine Prices Milking Machine Milking Machines Dairy Machine vacuum pump booster

Product Description

 Portable Vacuum Pump for Double Cow Milking Machine
 Prices Milking Machine Milking Machines Dairy Machine

The milking machine is composed of milking machine and vacuum device. The sucking action of the vacuum device is used to simulate the sucking action of the calf (sheep) and suck out the cow (sheep) milk. Although using the milking machine can greatly improve the working efficiency and the cleanliness of the milk, we should also pay attention when using the milking machine. Only by operating in strict accordance with the specification requirements can we achieve the final purpose of using the milking machine.

1.Copper core motor configuration, longer service life.

2.Movable wheel design for more convenient and flexible use.

3.OFF ON Push-type voltage switch, safe and convenient.

4.Sanitary stainless steel milking bucket, wear-resistant, corrosion-resistant.

5.Food grade milk tube, milk lining, non-toxic and odorless.

6.The whole machine is more compact, mobile and convenient, suitable for home use.

7.The whole machine has good milking performance and is economical.

Model SML-01 SML-02
Vacuum Degree 0.04-0.05Mpa(adjustable) 0.04-0.05Mpa(adjustable)
Pulsation Times 64 times per minute 64 times per minute
Power Fitted 0.55kw 0.75kw
Voltage 220V/50HZ(CCustomizable) 220V/50HZ(CCustomizable)
Productivity 10-12cows/hour,20-30goats/hour 20-24cows/hour,40-60goats/hour
Motor Speed 1440r/min 1440r/min
Bucket Quantity 1piece(25L) 2pieces(25L)

Our HangZhou SIF MACHINERY&EQUIPMENT Co.,Ltd, which is located in HangZhou city, ZheJiang province, has built a good and high reputation on building the most cost-effective machinery equipment in China.  SIF’s expertise has been sought by every of our customers from all over the world from the beginning. All of our SIF’s machinery equipment are accepted to be custom designed to suit the unique and different usage. Whatever you require, our SIF’s professional team can design and manufacture your machines for your application. Our Goal: Providing our clients the best solution, quality, price, after-sales service. The choice to work with us means a well-rounded commitment to professional engineering, high quality and intimate after-sales service. From initial feasibility report and testing, to engineering, manufacturing, and after-sales services, we bring our passion for quality and service into everything we do.Sincerely DO hope that we can cooperate with you to maximize the mutual benefits of all parties involved, and foward to a beautiful and brightful future together.

Q1:What is the MOQ for your ?
A:Our MOQ is 1 set.And any order quantities are highly appreciated.

Q2:What is your terms of delivery?
A:EXW, FOB, CFR, CIF.Which payment terms is depending on your choose.

Q3:Can I get a free sample of your Milking Machine?
A:Yes,surely,we would like to provide the sample for you.But,we are afraid that you will pay
for the sample and delivery cost.

Q4:What is your guarantee period for your Milking Machine?
A:Our Milking Machine guarantee period is 12 months,and we also provide 24 hours
on-line service if any problems happen.

Q5:How is the quality of the machine?
A: We have been in this field for many years and can supply high quality machine for you.

Q6:Do you accept OEM&ODM?
A:Yes,OEM&ODM prejects are available.You are warmly weclome to have your own color,
logo,company name,contacts and any design on the Milking Machine. Even we are
willing to design the color,logo,nackages for you.

Q7: Can I test your Milking Machine with the raw material when visiting your factory?
A: Yes, surely, any testing our Milking Machine with the raw material is highly appreciated.

Q8: Could you provide us a better price?
A:Of course, we can provide you with an accurate quotation based on your specific
requirement and order volume.

Q9:What payment do you accept?
A:We accept T/T L/C Western Union Paypal Money Gram,50% as deposit, and 50% before
delivery. We’ll show you the photos of the products and packages before you pay the balance.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Available
Type: Vacuum Pump Milking Machine
Usage: Incubation Equipment
Samples:
US$ 460/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

Can Vacuum Pumps Be Used in the Aerospace Sector?

Vacuum pumps indeed have various applications in the aerospace sector. Here’s a detailed explanation:

Vacuum pumps play a crucial role in several areas of the aerospace industry, supporting various processes and systems. Some of the key applications of vacuum pumps in the aerospace sector include:

1. Space Simulation Chambers: Vacuum pumps are used in space simulation chambers to replicate the low-pressure conditions experienced in outer space. These chambers are utilized for testing and validating the performance and functionality of aerospace components and systems under simulated space conditions. Vacuum pumps create and maintain the necessary vacuum environment within these chambers, allowing engineers and scientists to evaluate the behavior and response of aerospace equipment in space-like conditions.

2. Propellant Management: In space propulsion systems, vacuum pumps are employed for propellant management. They help in the transfer, circulation, and pressurization of propellants, such as liquid rocket fuels or cryogenic fluids, in both launch vehicles and spacecraft. Vacuum pumps assist in creating the required pressure differentials for propellant flow and control, ensuring efficient and reliable operation of propulsion systems.

3. Environmental Control Systems: Vacuum pumps are utilized in the environmental control systems of aircraft and spacecraft. These systems are responsible for maintaining the desired atmospheric conditions, including temperature, humidity, and cabin pressure, to ensure the comfort, safety, and well-being of crew members and passengers. Vacuum pumps are used to regulate and control the cabin pressure, facilitating the circulation of fresh air and maintaining the desired air quality within the aircraft or spacecraft.

4. Satellite Technology: Vacuum pumps find numerous applications in satellite technology. They are used in the fabrication and testing of satellite components, such as sensors, detectors, and electronic devices. Vacuum pumps help create the necessary vacuum conditions for thin film deposition, surface treatment, and testing processes, ensuring the performance and reliability of satellite equipment. Additionally, vacuum pumps are employed in satellite propulsion systems to manage propellants and provide thrust for orbital maneuvers.

5. Avionics and Instrumentation: Vacuum pumps are involved in the production and testing of avionics and instrumentation systems used in aerospace applications. They facilitate processes such as thin film deposition, vacuum encapsulation, and vacuum drying, ensuring the integrity and functionality of electronic components and circuitry. Vacuum pumps are also utilized in vacuum leak testing, where they help create a vacuum environment to detect and locate any leaks in aerospace systems and components.

6. High Altitude Testing: Vacuum pumps are used in high altitude testing facilities to simulate the low-pressure conditions encountered at high altitudes. These testing facilities are employed for evaluating the performance and functionality of aerospace equipment, such as engines, materials, and structures, under simulated high altitude conditions. Vacuum pumps create and control the required low-pressure environment, allowing engineers and researchers to assess the behavior and response of aerospace systems in high altitude scenarios.

7. Rocket Engine Testing: Vacuum pumps are crucial in rocket engine testing facilities. They are utilized to evacuate and maintain the vacuum conditions in engine test chambers or nozzles during rocket engine testing. By creating a vacuum environment, these pumps simulate the conditions experienced by rocket engines in the vacuum of space, enabling accurate testing and evaluation of engine performance, thrust levels, and efficiency.

It’s important to note that aerospace applications often require specialized vacuum pumps capable of meeting stringent requirements, such as high reliability, low outgassing, compatibility with propellants or cryogenic fluids, and resistance to extreme temperatures and pressures.

In summary, vacuum pumps are extensively used in the aerospace sector for a wide range of applications, including space simulation chambers, propellant management, environmental control systems, satellite technology, avionics and instrumentation, high altitude testing, and rocket engine testing. They contribute to the development, testing, and operation of aerospace equipment, ensuring optimal performance, reliability, and safety.

vacuum pump

Can Vacuum Pumps Be Used for Leak Detection?

Yes, vacuum pumps can be used for leak detection purposes. Here’s a detailed explanation:

Leak detection is a critical task in various industries, including manufacturing, automotive, aerospace, and HVAC. It involves identifying and locating leaks in a system or component that may result in the loss of fluids, gases, or pressure. Vacuum pumps can play a significant role in leak detection processes by creating a low-pressure environment and facilitating the detection of leaks through various methods.

Here are some ways in which vacuum pumps can be used for leak detection:

1. Vacuum Decay Method: The vacuum decay method is a common technique used for leak detection. It involves creating a vacuum in a sealed system or component using a vacuum pump and monitoring the pressure change over time. If there is a leak present, the pressure will gradually increase due to the ingress of air or gas. By measuring the rate of pressure rise, the location and size of the leak can be estimated. Vacuum pumps are used to evacuate the system and establish the initial vacuum required for the test.

2. Bubble Testing: Bubble testing is a simple and visual method for detecting leaks. In this method, the component or system being tested is pressurized with a gas, and then immersed in a liquid, typically soapy water. If there is a leak, the gas escaping from the component will form bubbles in the liquid, indicating the presence and location of the leak. Vacuum pumps can be used to create a pressure differential that forces gas out of the leak, making it easier to detect the bubbles.

3. Helium Leak Detection: Helium leak detection is a highly sensitive method used to locate extremely small leaks. Helium, being a small atom, can easily penetrate small openings and leaks. In this method, the system or component is pressurized with helium gas, and a vacuum pump is used to evacuate the surrounding area. A helium leak detector is then used to sniff or scan the area for the presence of helium, indicating the location of the leak. Vacuum pumps are essential for creating the low-pressure environment required for this method and ensuring accurate detection.

4. Pressure Change Testing: Vacuum pumps can also be used in pressure change testing for leak detection. This method involves pressurizing a system or component and then isolating it from the pressure source. The pressure is monitored over time, and any significant pressure drop indicates the presence of a leak. Vacuum pumps can be used to evacuate the system after pressurization, returning it to atmospheric pressure for comparison or retesting.

5. Mass Spectrometer Leak Detection: Mass spectrometer leak detection is a highly sensitive and precise method used to identify and quantify leaks. It involves introducing a tracer gas, usually helium, into the system or component being tested. A vacuum pump is used to evacuate the surrounding area, and a mass spectrometer is employed to analyze the gas samples for the presence of the tracer gas. This method allows for accurate detection and quantification of leaks down to very low levels. Vacuum pumps are crucial for creating the necessary vacuum conditions and ensuring reliable results.

In summary, vacuum pumps can be effectively used for leak detection purposes. They facilitate various leak detection methods such as vacuum decay, bubble testing, helium leak detection, pressure change testing, and mass spectrometer leak detection. Vacuum pumps create the required low-pressure environment, assist in evacuating the system or component being tested, and enable accurate and reliable leak detection. The choice of vacuum pump depends on the specific requirements of the leak detection method and the sensitivity needed for the application.

vacuum pump

What Is a Vacuum Pump, and How Does It Work?

A vacuum pump is a mechanical device used to create and maintain a vacuum or low-pressure environment within a closed system. Here’s a detailed explanation:

A vacuum pump operates on the principle of removing gas molecules from a sealed chamber, reducing the pressure inside the chamber to create a vacuum. The pump accomplishes this through various mechanisms and techniques, depending on the specific type of vacuum pump. Here are the basic steps involved in the operation of a vacuum pump:

1. Sealed Chamber:

The vacuum pump is connected to a sealed chamber or system from which air or gas molecules need to be evacuated. The chamber can be a container, a pipeline, or any other enclosed space.

2. Inlet and Outlet:

The vacuum pump has an inlet and an outlet. The inlet is connected to the sealed chamber, while the outlet may be vented to the atmosphere or connected to a collection system to capture or release the evacuated gas.

3. Mechanical Action:

The vacuum pump creates a mechanical action that removes gas molecules from the chamber. Different types of vacuum pumps use various mechanisms for this purpose:

– Positive Displacement Pumps: These pumps physically trap gas molecules and remove them from the chamber. Examples include rotary vane pumps, piston pumps, and diaphragm pumps.

– Momentum Transfer Pumps: These pumps use high-speed jets or rotating blades to transfer momentum to gas molecules, pushing them out of the chamber. Examples include turbomolecular pumps and diffusion pumps.

– Entrapment Pumps: These pumps capture gas molecules by adsorbing or condensing them on surfaces or in materials within the pump. Cryogenic pumps and ion pumps are examples of entrainment pumps.

4. Gas Evacuation:

As the vacuum pump operates, it creates a pressure differential between the chamber and the pump. This pressure differential causes gas molecules to move from the chamber to the pump’s inlet.

5. Exhaust or Collection:

Once the gas molecules are removed from the chamber, they are either exhausted into the atmosphere or collected and processed further, depending on the specific application.

6. Pressure Control:

Vacuum pumps often incorporate pressure control mechanisms to maintain the desired level of vacuum within the chamber. These mechanisms can include valves, regulators, or feedback systems that adjust the pump’s operation to achieve the desired pressure range.

7. Monitoring and Safety:

Vacuum pump systems may include sensors, gauges, or indicators to monitor the pressure levels, temperature, or other parameters. Safety features such as pressure relief valves or interlocks may also be included to protect the system and operators from overpressure or other hazardous conditions.

It’s important to note that different types of vacuum pumps have varying levels of vacuum they can achieve and are suitable for different pressure ranges and applications. The choice of vacuum pump depends on factors such as the required vacuum level, gas composition, pumping speed, and the specific application’s requirements.

In summary, a vacuum pump is a device that removes gas molecules from a sealed chamber, creating a vacuum or low-pressure environment. The pump accomplishes this through mechanical actions, such as positive displacement, momentum transfer, or entrapment. By creating a pressure differential, the pump evacuates gas from the chamber, and the gas is either exhausted or collected. Vacuum pumps play a crucial role in various industries, including manufacturing, research, and scientific applications.

China supplier Portable Vacuum Pump for Double Cow Milking Machine Prices Milking Machine Milking Machines Dairy Machine   vacuum pump booster	China supplier Portable Vacuum Pump for Double Cow Milking Machine Prices Milking Machine Milking Machines Dairy Machine   vacuum pump booster
editor by CX 2024-03-27

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *