China high quality Degassing 300m3/H Processing Rotary Vane Vacuum Pump vacuum pump ac system

Product Description

Product Description

Rotary vane vacuum pump mainly consists of pump body, rotor, rotary vane, end cap, oil tank and so on. A rotor with 3 vanes is mounted eccentrically in a cylindrical housing, the 3 vanes slide in the rotor slots. When rotating, the centrifugal force keeps the vanes in contact with the housing and the rotation drives the rotor to slide along the housing.

1.Exhaust porti nterface 2.Exhaust filter 3.Suction valve
4.Oil level gauge 5.Drain valve  6.Filler plug
7.Exhaust valve 8.Blade 9.Rotor
10.Tank 11.Axial fan 12.Motor 
13.Oil filter 14.Suction port interface 15.Air ballast valve
16.Radiator tube 17.Return valve  

Working principle

The diagram below shows the structure of the pump. When the rotor rotates, the vanes, the housing and the 2 end caps form three chambers, every turn, the volume of each chamber increases or decreases due to the sliding of the vanes, completing the suction and discharge process.

Main features

  1. Able to work continuously for a long time under the inlet pressure of 5×104Pa.
  2.  Low noise, low vibration, foot bolts is not required.
  3. Exhaust filter in the pump effectively separates the oil in the gas to avoid pollution of the environment.
  4. Directly driven by motor.
  5. Compact structure, light weight, air-cooled.
  6. Easy to operate, install and maintain.

Applications

The rotary vane vacuum pump is suitable for the applications where the requirement of vacuum is not high and the operation is reliable and maintenance is convenient. It is commonly used in vacuum packaging of various foodstuffs, vacuum forming of rubber and plastic industry, paper transmission of printing industry, vacuum impregnation and leakage prevention of various castings, vacuum fixture, vacuum drying, vacuum filtration, and hospital surgery.

Product Parameters

 

Model Nominal pumping speed(50Hz)
 m³/h
Ultimate pressure
 ≤Pa
Ultimate pressure with Gas Ballast valve on ≤Pa Nominal motor rating (50Hz)   kw         Nominal motor speed  (50Hz) RPM  Water vapour capacity
 kg/h
Noise level   db(A) Oil capacity
 L
Working Temperature
ºC
Suction Connection size
 inch
Discharge Connection size
 inch
Weight
kg
XD-571 10 200   0.37 2800 0.4 62 0.5 77 G1/2″ G1/2″ 16
XD-571 20 200   0.75 2880 0.4 63 0.5 77 G1/2″ G1/2″ 18
XD-571A 20 200   0.75 2880 0.4 63 0.5 77 G1/2″ G1/2″ 18
XD-571C 20 200   0.9 2880 0.4 65 0.5 79 G3/4″ G3/4″ 20
XD-571 25 200   0.75 2880 0.4 65 0.5 79 G3/4″ G3/4″ 20
XD-040C 40 50 200 1.1 1500 0.6 64 1.25 76 G1 1/4″ G1 1/4″ 48
XD-063C 63 50 200 1.5/2.2 1500 1 65 2 79 G1 1/4″ G1 1/4″ 58
XD-063D 63 50 200 1.5 1500 0.6 65 1.5 79 G1 1/4″ G1 1/4″ 49
XD-100C 100 50 200 2.2/3 1500 1.5 66 2 79 G1 1/4″ G1 1/4″ 72
XD-160C 160 50 200 4 1500 2.5 71 5 70 G2″ G2″ 158
XD-202C 200 50 200 4 1500 4 73 5 70 G2″ G2″ 158
XD-250C 250 50 200 5.5 1500 4.5 73 7 73 G2″ G2″ 195
XD-302C 300 50 200 5.5/7.5 1500 5 75 7 75 G2″ G2″ 211

Dimensional drawing

 

 

Our factory

 

 

 

FAQ

Q: What information should I offer for an inquiry?
A: You can inquire based on the model directly, but it is always recommended that you contact us so that we can help you to check if the pump is the most appropriate for your application.

Q: Can you make a customized vacuum pump?
A: Yes, we can do some special designs to meet customer applications. Such as customized sealing systems, speical surface treatment can be applied for roots vacuum pump and screw vacuum pump. Please contact us if you have special requirements. 

Q: I have problems with our vacuum pumps or vacuum systems, can you offer some help?
A: We have application and design engineers with more than 30 years of experience in vacuum applications in different industries and help a lot of customers resolve their problems, such as leakage issues, energy-saving solutions, more environment-friendly vacuum systems, etc. Please contact us and we’ll be very happy if we can offer any help to your vacuum system.

Q: Can you design and make customized vacuum systems?
A: Yes, we are good for this.

Q: What is your MOQ?
A: 1 piece or 1 set.

Q: How about your delivery time?
A: 5-10 working days for the standard vacuum pump if the quantity is below 20 pieces, 20-30 working days for the conventional vacuum system with less than 5 sets. For more quantity or special requirements, please contact us to check the lead time.

Q: What are your payment terms?
A: By T/T, 50% advance payment/deposit and 50% paid before shipment.

Q: How about the warranty?
A: We offer 1-year warranty (except for the wearing parts).

Q: How about the service?
A: We offer remote video technical support. We can send the service engineer to the site for some special requirements.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Video Instruction
Warranty: 1 Year
Nominal Pumping Speed(50Hz): 300 M3/H
Ultimate Pressure(W/O Gas Ballast Valve): 0.5 Hpa
Nominal Motor Rating(50Hz): 5.5/7.5kw
Nominal Motor Speed(50Hz): 1500rpm

vacuum pump

How Do You Maintain and Troubleshoot Vacuum Pumps?

Maintaining and troubleshooting vacuum pumps is essential to ensure their optimal performance and longevity. Here’s a detailed explanation:

Maintenance of Vacuum Pumps:

1. Regular Inspection: Perform regular visual inspections of the pump to check for any signs of damage, leaks, or abnormal wear. Inspect the motor, belts, couplings, and other components for proper alignment and condition.

2. Lubrication: Follow the manufacturer’s guidelines for lubrication. Some vacuum pumps require regular oil changes or lubrication of moving parts. Ensure that the correct type and amount of lubricant are used.

3. Oil Level Check: Monitor the oil level in oil-sealed pumps and maintain it within the recommended range. Add or replace oil as necessary, following the manufacturer’s instructions.

4. Filter Maintenance: Clean or replace filters regularly to prevent clogging and ensure proper airflow. Clogged filters can impair pump performance and increase energy consumption.

5. Cooling System: If the vacuum pump has a cooling system, inspect it regularly for cleanliness and proper functioning. Clean or replace cooling components as needed to prevent overheating.

6. Seals and Gaskets: Check the seals and gaskets for signs of wear or leakage. Replace any damaged or worn seals promptly to maintain airtightness.

7. Valve Maintenance: If the vacuum pump includes valves, inspect and clean them regularly to ensure proper operation and prevent blockages.

8. Vibration and Noise: Monitor the pump for excessive vibration or unusual noise, which may indicate misalignment, worn bearings, or other mechanical issues. Address these issues promptly to prevent further damage.

Troubleshooting Vacuum Pump Problems:

1. Insufficient Vacuum Level: If the pump is not achieving the desired vacuum level, check for leaks in the system, improper sealing, or worn-out seals. Inspect valves, connections, and seals for leaks and repair or replace as needed.

2. Poor Performance: If the pump is not providing adequate performance, check for clogged filters, insufficient lubrication, or worn-out components. Clean or replace filters, ensure proper lubrication, and replace worn parts as necessary.

3. Overheating: If the pump is overheating, check the cooling system for blockages or insufficient airflow. Clean or replace cooling components and ensure proper ventilation around the pump.

4. Excessive Noise or Vibration: Excessive noise or vibration may indicate misalignment, worn bearings, or other mechanical issues. Inspect and repair or replace damaged or worn parts. Ensure proper alignment and balance of rotating components.

5. Motor Issues: If the pump motor fails to start or operates erratically, check the power supply, electrical connections, and motor components. Test the motor using appropriate electrical testing equipment and consult an electrician or motor specialist if necessary.

6. Excessive Oil Consumption: If the pump is consuming oil at a high rate, check for leaks or other issues that may be causing oil loss. Inspect seals, gaskets, and connections for leaks and repair as needed.

7. Abnormal Odors: Unusual odors, such as a burning smell, may indicate overheating or other mechanical problems. Address the issue promptly and consult a technician if necessary.

8. Manufacturer Guidelines: Always refer to the manufacturer’s guidelines and recommendations for maintenance and troubleshooting specific to your vacuum pump model. Follow the prescribed maintenance schedule and seek professional assistance when needed.

By following proper maintenance procedures and promptly addressing any troubleshooting issues, you can ensure the reliable operation and longevity of your vacuum pump.

vacuum pump

Can Vacuum Pumps Be Used in the Production of Solar Panels?

Yes, vacuum pumps are extensively used in the production of solar panels. Here’s a detailed explanation:

Solar panels, also known as photovoltaic (PV) panels, are devices that convert sunlight into electricity. The manufacturing process of solar panels involves several critical steps, many of which require the use of vacuum pumps. Vacuum technology plays a crucial role in ensuring the efficiency, reliability, and quality of solar panel production. Here are some key areas where vacuum pumps are utilized:

1. Silicon Ingot Production: The first step in solar panel manufacturing is the production of silicon ingots. These ingots are cylindrical blocks of pure crystalline silicon that serve as the raw material for solar cells. Vacuum pumps are used in the Czochralski process, which involves melting polycrystalline silicon in a quartz crucible and then slowly pulling a single crystal ingot from the molten silicon. Vacuum pumps create a controlled environment by removing impurities and preventing contamination during the crystal growth process.

2. Wafering: After the silicon ingots are produced, they undergo wafering, where the ingots are sliced into thin wafers. Vacuum pumps are used in wire saws to create a low-pressure environment that helps to cool and lubricate the cutting wire. The vacuum also assists in removing the silicon debris generated during the slicing process, ensuring clean and precise cuts.

3. Solar Cell Production: Vacuum pumps play a significant role in various stages of solar cell production. Solar cells are the individual units within a solar panel that convert sunlight into electricity. Vacuum pumps are used in the following processes:

– Diffusion: In the diffusion process, dopants such as phosphorus or boron are introduced into the silicon wafer to create the desired electrical properties. Vacuum pumps are utilized in the diffusion furnace to create a controlled atmosphere for the diffusion process and remove any impurities or gases that may affect the quality of the solar cell.

– Deposition: Thin films of materials such as anti-reflective coatings, passivation layers, and electrode materials are deposited onto the silicon wafer. Vacuum pumps are used in various deposition techniques like physical vapor deposition (PVD) or chemical vapor deposition (CVD) to create the necessary vacuum conditions for precise and uniform film deposition.

– Etching: Etching processes are employed to create the desired surface textures on the solar cell, which enhance light trapping and improve efficiency. Vacuum pumps are used in plasma etching or wet etching techniques to remove unwanted material or create specific surface structures on the solar cell.

4. Encapsulation: After the solar cells are produced, they are encapsulated to protect them from environmental factors such as moisture and mechanical stress. Vacuum pumps are used in the encapsulation process to create a vacuum environment, ensuring the removal of air and moisture from the encapsulation materials. This helps to achieve proper bonding and prevents the formation of bubbles or voids, which could degrade the performance and longevity of the solar panel.

5. Testing and Quality Control: Vacuum pumps are also utilized in testing and quality control processes during solar panel production. For example, vacuum systems can be used for leak testing to ensure the integrity of the encapsulation and to detect any potential defects or leaks in the panel assembly. Vacuum-based measurement techniques may also be employed for assessing the electrical characteristics and efficiency of the solar cells or panels.

In summary, vacuum pumps are integral to the production of solar panels. They are used in various stages of the manufacturing process, including silicon ingot production, wafering, solar cell production (diffusion, deposition, and etching), encapsulation, and testing. Vacuum technology enables precise control, contamination prevention, and efficient processing, contributing to the production of high-quality and reliable solar panels.vacuum pump

Can Vacuum Pumps Be Used in Laboratories?

Yes, vacuum pumps are extensively used in laboratories for a wide range of applications. Here’s a detailed explanation:

Vacuum pumps are essential tools in laboratory settings as they enable scientists and researchers to create and control vacuum or low-pressure environments. These controlled conditions are crucial for various scientific processes and experiments. Here are some key reasons why vacuum pumps are used in laboratories:

1. Evaporation and Distillation: Vacuum pumps are frequently used in laboratory evaporation and distillation processes. By creating a vacuum, they lower the boiling point of liquids, allowing for gentler and more controlled evaporation. This is particularly useful for heat-sensitive substances or when precise control over the evaporation process is required.

2. Filtration: Vacuum filtration is a common technique in laboratories for separating solids from liquids or gases. Vacuum pumps create suction, which helps draw the liquid or gas through the filter, leaving the solid particles behind. This method is widely used in processes such as sample preparation, microbiology, and analytical chemistry.

3. Freeze Drying: Vacuum pumps play a crucial role in freeze drying or lyophilization processes. Freeze drying involves removing moisture from a substance while it is in a frozen state, preserving its structure and properties. Vacuum pumps facilitate the sublimation of frozen water directly into vapor, resulting in the removal of moisture under low-pressure conditions.

4. Vacuum Ovens and Chambers: Vacuum pumps are used in conjunction with vacuum ovens and chambers to create controlled low-pressure environments for various applications. Vacuum ovens are used for drying heat-sensitive materials, removing solvents, or conducting reactions under reduced pressure. Vacuum chambers are utilized for testing components under simulated space or high-altitude conditions, degassing materials, or studying vacuum-related phenomena.

5. Analytical Instruments: Many laboratory analytical instruments rely on vacuum pumps to function properly. For example, mass spectrometers, electron microscopes, surface analysis equipment, and other analytical instruments often require vacuum conditions to maintain sample integrity and achieve accurate results.

6. Chemistry and Material Science: Vacuum pumps are employed in numerous chemical and material science experiments. They are used for degassing samples, creating controlled atmospheres, conducting reactions under reduced pressure, or studying gas-phase reactions. Vacuum pumps are also used in thin film deposition techniques like physical vapor deposition (PVD) and chemical vapor deposition (CVD).

7. Vacuum Systems for Experiments: In scientific research, vacuum systems are often designed and constructed for specific experiments or applications. These systems can include multiple vacuum pumps, valves, and chambers to create specialized vacuum environments tailored to the requirements of the experiment.

Overall, vacuum pumps are versatile tools that find extensive use in laboratories across various scientific disciplines. They enable researchers to control and manipulate vacuum or low-pressure conditions, facilitating a wide range of processes, experiments, and analyses. The choice of vacuum pump depends on factors such as required vacuum level, flow rate, chemical compatibility, and specific application needs.

China high quality Degassing 300m3/H Processing Rotary Vane Vacuum Pump   vacuum pump ac system	China high quality Degassing 300m3/H Processing Rotary Vane Vacuum Pump   vacuum pump ac system
editor by Dream 2024-04-23

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *