China manufacturer Oil Free Piston Rocking Oilless Vacuum Pump for Baking Furnaces vacuum pump connector

Product Description

oilless oil free piston rocking vacuum pump for baking furnaces

Advantages:
Oil-less piston Vacuum Pumps / Air Compressors

PRANSCH oil-less rocking piston pump and air compressor combines the best characteristics of traditional piston pumps(air compressor) and diaphragm pumps into small units with excellent features.

  1. Light weight and very portable
  2. Durable and near ZERO maintenance
  3. Thermal protection (130 deg C)
  4. Power cord with plug, 1m length
  5. Shock mount
  6. Silencer – muffler
  7. Stainless steel vacuum and pressure gauge, both with oil damping
  8. Two stainless steel needle valves each with lock nut.
  9. All nickel plated fittings
  10. Power supply 230V, 50/60 Hz

This series is ideal for use in applications where oil-mist is undesirable. For examples, pressure/vacuum filtration, air sampling, water aeration, flame photometer, etc.

Specification:

Model Frequency Flow Pressure Power Speed Current Voltage Heat Sound Weight Hole Installation Dimensions
Hz L/min Kpa Kw Min-1 A V 0 C db(A) Kg MM MM
PM200V 50 33 -84 0.10  1380 0.45  210/235 5-40 48 1.8  5 L100xW74
60 50 -84 0.12 1450 0.90  110/125 5-40 48 1.8  5
PM300V 50 66 -86 0.12 1380 0.56  210/235 5-40 50 3.2  6 L118xW70
60 75 -86 0.14 1450 1.13  110/125 5-40 50 3.2  6
PM400V 50 80 -92 0.32 1380 0.95  210/235 5-40 56 6.0  6 L153xW95
60 92 -92 0.36 1450 1.91  110/125 5-40 56 6.0  6
PM550V 50 100 -92 0.32 1380 1.50  210/235 5-40 56 6.0  6 L148xW83
60 110 -92 0.36 1450 3.10  110/125 5-40 56 6.0  6
PM1400V 50 166 -92 0.45 1380 1.90  210/235 5-40 58 8.5  6 L203xW86
60 183 -92 0.52 1450 4.10  110/125 5-40 58 8.5  6
PM2000V 50 216 -92 0.55 1380 2.50  210/235 5-40 60 9.0  6 L203xW86
60 250 -92 0.63 1450 5.20  110/125 5-40 60 9.0  6
HP2400V 50 225 -94 0.90  1380 3.30  210/235 5-40 75 17.0  7 L246xW127
60 258 -94 1.10  1450 6.90  110/125 5-40 75 17.0  7
PM3000V 50 230 -94 1.10  1380 4.20  210/235 5-40 76 17.5  7 L246xW127
60 266 -94 1.30  1450 8.50  110/125 5-40 76 17.5  7

Why use a Rocking Piston Product?
Variety
Pransch oilless Rocking Piston air compressors and vacuum pumps, available in single, twin, miniature, and tankmounted
styles, are the perfect choice for hundreds of applications. Choose from dual frequency, shaded pole,
and permanent split capacitor (psc) electric motors with AC multi-voltage motors to match North American,
European, and CZPT power supplies. A complete line of recommended accessories as well as 6, 12, and
24 volt DC models in brush and brushless types are also available.

Performance
The rocking piston combines the best characteristics of piston and diaphragm air compressors into a small unit
with exceptional performance. Air flow capabilities from 3.4 LPM to 5.5 CFM (9.35 m3/h), pressure to 175 psi
(12.0 bar) and vacuum capabilities up to 29 inHg (31 mbar). Horsepowers range from 1/20 to 1/2 HP
(0.04 to 0.37 kW).

Reliable
These pumps are made to stand up through years of use. The piston rod and bearing assembly are bonded
together, not clamped; they will not slip, loosen, or misalign to cause trouble.

Clean Air
Because CZPT pumps are oil-free, they are ideal for use in applications in laboratories, hospitals, and the
food industry where oil mist contamination is undesirable.

Application:

  1. Transportation application include:Auto detailing Equipment,Braking Systems,Suspension Systems,Tire Inflators
  2. Food and Beverage application include:beverage dispensing,coffee and Espresso equipment,Food processing and packaging,Nitrogen Generation
  3. Medical and laboratory application include:Body fluid Analysis equipment,Dental compressors and hand tools,dental vacuum ovens,Dermatology equipment,eye surgery equipment,lab automation,Liposuction equipment,Medical aspiration,Nitrogen Generation,Oxygen concentrators,Vacuum Centrifuge,vacuum filtering,ventilators
  4. General industrial application include:Cable pressurization,core drilling
  5. Environmental application include:Dry sprinkler systems,Pond Aeration,Refrigerant Reclamation,Water Purification Systems
  6. Printing and packaging application include:vacuum frames
  7. material Handling application include:vacuum mixing

What is Rocking piston type dry vacuum pumps?

Rocking Piston type dry vacuum pump is a mechanical vacuum pump that transfers gas by the reciprocating motion of a piston interlocking with an eccentric rotating shaft.

Features of Rocking piston type dry vacuum pumps

Since this is an oil-less pump, backflow of air through the sliding part between the cylinder and piston ring is unavoidable. Because of its simple structure, this pump has low ultimate pressure. However, it can obtain stable pressure in a low vacuum region.
Some models can also be used as a pressurizing source for compressors. The pump is widely used in printed board mounting equipment, vacuum packaging machines, material adsorption transfer equipment, labeling machines, printing ink degassing machines, printing machines, photograph plate making machines, screen printing machines, degassing machines, burying machines, baking furnaces, suction machines, automobile exhaust gas analyzers, refrigerant recovery device, plasma cutting equipment.

Strength: The pump has a simple structure and is easy to maintain.
Weakness: The pump can not obtain a high vacuum.

Applications

Some models can also be used as a pressurizing source for compressors. The pump is widely used in printed board mounting equipment, vacuum packaging machines, material adsorption transfer equipment, labeling machines, printing ink degassing machines, printing machines, photograph plate making machines, screen printing machines, degassing machines, burying machines, baking furnaces, suction machines, automobile exhaust gas analyzers, refrigerant recovery device, plasma cutting equipment.

Mechanism of Rocking piston type dry vacuum pumps

 

When the eccentric cam directly connected to the motor rotates, the piston moves up and down in the cylinder while swinging. The space inside the cylinder changes due to the vertical movement of the piston, and the gas is transported by repeating intake, compression and exhaust.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Reciprocating Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Working Conditions: Dry
Customization:
Available

|

piston vacuum pump

What Are the Key Components of a Piston Vacuum Pump?

A piston vacuum pump consists of several key components that work together to create a vacuum. Here’s a detailed explanation of these components:

1. Cylinder:

– The cylinder is a cylindrical chamber where the piston moves back and forth.

– It provides the housing for the piston and plays a crucial role in creating the vacuum by changing the volume of the chamber.

2. Piston:

– The piston is a movable component that fits inside the cylinder.

– It creates a seal between the piston and cylinder walls, allowing the pump to create a pressure differential and generate a vacuum.

– The piston is typically driven by a motor or an external power source.

3. Intake Valve:

– The intake valve allows gas or air to enter the cylinder during the suction stroke.

– It opens when the piston moves downward, creating a vacuum and drawing gas into the cylinder from the system being evacuated.

4. Exhaust Valve:

– The exhaust valve allows the expelled gas to exit the cylinder during the compression stroke.

– It opens when the piston moves upward, allowing the compressed gas to be expelled from the cylinder.

5. Lubrication System:

– Piston vacuum pumps often incorporate a lubrication system to ensure smooth operation and maintain an airtight seal between the piston and cylinder walls.

– Lubricating oil is introduced into the cylinder to provide lubrication and help maintain the seal.

– The lubrication system also helps to cool the pump by dissipating heat generated during operation.

6. Cooling System:

– Some piston vacuum pumps may include a cooling system to prevent overheating.

– This can involve the circulation of a cooling fluid or the use of cooling fins to dissipate heat generated during operation.

7. Pressure Gauges and Controls:

– Pressure gauges are often installed to monitor the vacuum level or pressure within the system.

– Control mechanisms, such as switches or valves, may be present to regulate the operation of the pump or maintain the desired vacuum level.

8. Motor or Power Source:

– The piston in a piston vacuum pump is typically driven by a motor or an external power source.

– The motor provides the necessary mechanical energy to move the piston back and forth, creating the suction and compression strokes.

9. Frame or Housing:

– The components of the piston vacuum pump are housed within a frame or housing that provides structural support and protection.

– The frame or housing also helps to reduce noise and vibration during operation.

In summary, the key components of a piston vacuum pump include the cylinder, piston, intake valve, exhaust valve, lubrication system, cooling system, pressure gauges and controls, motor or power source, and the frame or housing. These components work together to create a vacuum by reciprocating the piston within the cylinder, allowing gas to be drawn in and expelled, while maintaining an airtight seal. The lubrication and cooling systems, as well as pressure gauges and controls, ensure smooth and efficient operation of the pump.

piston vacuum pump

How Does the Cost of Piston Vacuum Pumps Compare to Other Types?

The cost of piston vacuum pumps can vary depending on factors such as the pump’s size, capacity, features, and the specific manufacturer or supplier. Here’s a detailed explanation of how the cost of piston vacuum pumps compares to other types:

– Piston vacuum pumps generally fall into the mid to high range in terms of cost compared to other types of vacuum pumps.

– Compared to rotary vane pumps, which are another common type of vacuum pump, piston pumps are often more expensive.

– This higher cost can be attributed to several factors:

– Design and Construction: Piston vacuum pumps typically have a more complex design and construction, involving precision machining and tighter tolerances. This can contribute to higher manufacturing costs.

– Performance and Features: Piston pumps often offer higher performance and greater pumping capacity compared to other types of pumps. They may also incorporate additional features such as variable speed control or advanced control systems, which can increase the cost.

– Robustness and Durability: Piston pumps are known for their durability and ability to handle demanding applications. They are designed to withstand high pressures and heavy-duty operation, which can contribute to their higher cost.

– On the other hand, when compared to more specialized or advanced vacuum pump technologies such as turbomolecular pumps or cryogenic pumps, piston vacuum pumps are generally more cost-effective.

– Turbomolecular pumps, which are used in high-vacuum applications, are typically more expensive due to their complex design, high rotational speeds, and advanced materials used.

– Cryogenic pumps, which rely on extremely low temperatures for vacuum creation, are also typically more expensive due to the specialized cooling systems and cryogenic components involved.

– It’s important to note that the cost of any vacuum pump can also vary depending on factors such as the required pumping capacity, ultimate vacuum level, and specific industry or application requirements.

– When considering the cost of a piston vacuum pump, it is crucial to assess the overall value it provides in terms of performance, reliability, durability, and suitability for the intended application.

– Additionally, factors such as maintenance requirements, energy efficiency, and the availability of spare parts and service support should also be taken into account when evaluating the cost-effectiveness of a piston vacuum pump.

In summary, piston vacuum pumps generally fall into the mid to high range in terms of cost compared to other types of vacuum pumps. While they may be more expensive than rotary vane pumps, they are often more cost-effective compared to specialized technologies such as turbomolecular pumps or cryogenic pumps. The specific cost of a piston vacuum pump can vary based on factors such as size, capacity, features, and manufacturer.

piston vacuum pump

How Do You Maintain and Service a Piston Vacuum Pump?

Maintaining and servicing a piston vacuum pump is essential to ensure its optimal performance and longevity. Here’s a detailed explanation:

1. Regular Inspection:

– Perform regular visual inspections of the pump to check for any signs of damage, leaks, or wear.

– Inspect the seals, gaskets, and fittings for any cracks or deterioration.

– Ensure that all connections are tight and secure.

2. Oil Change:

– Piston vacuum pumps typically require regular oil changes to maintain proper lubrication and prevent contamination.

– Follow the manufacturer’s guidelines regarding the frequency of oil changes.

– Drain the old oil completely and replace it with the recommended oil type and quantity.

– Dispose of the used oil according to proper environmental regulations.

3. Filter Replacement:

– Many piston vacuum pumps have filters to prevent dust, particles, and contaminants from entering the pump.

– Check the filter regularly and replace it as needed to maintain proper airflow and prevent clogging.

4. Cleaning:

– Keep the exterior of the pump and its surrounding area clean and free from debris.

– Use a soft cloth or brush to remove any dust or dirt accumulation.

– Avoid using harsh chemicals or solvents that may damage the pump’s surfaces.

5. Seals and Gaskets:

– Inspect the seals and gaskets regularly and replace them if they show signs of wear or damage.

– Ensure that the seals provide a proper airtight seal to prevent leaks and maintain vacuum performance.

6. Cooling System:

– If the piston vacuum pump has a cooling system, monitor it regularly to ensure proper functioning.

– Clean or replace the cooling system components as recommended by the manufacturer.

7. Professional Maintenance:

– Consider scheduling professional maintenance and service at regular intervals, especially for more complex or critical applications.

– Professional technicians can perform in-depth inspections, conduct performance tests, and address any specific issues or concerns.

– They can also provide recommendations on optimizing the pump’s performance and extending its lifespan.

8. Manufacturer Guidelines:

– Always refer to the manufacturer’s maintenance and service guidelines specific to your piston vacuum pump model.

– Follow their recommendations regarding oil type, oil level, maintenance intervals, and any other specific instructions.

– Adhering to the manufacturer’s guidelines ensures proper operation and prevents voiding the warranty.

In summary, maintaining and servicing a piston vacuum pump involves regular inspection, oil changes, filter replacement, cleaning, checking seals and gaskets, monitoring the cooling system, and considering professional maintenance. Following the manufacturer’s guidelines is crucial for effective maintenance and to maximize the pump’s performance and lifespan.

China manufacturer Oil Free Piston Rocking Oilless Vacuum Pump for Baking Furnaces   vacuum pump connector	China manufacturer Oil Free Piston Rocking Oilless Vacuum Pump for Baking Furnaces   vacuum pump connector
editor by Dream 2024-04-23

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *