China best -90kpa 80lpm Medical Use Silent Piston Air Vacuum Pump manufacturer

Product Description

Product Parameter

NOTE: All test values are nominal and for reference only. They are not guaranteed maximum or minimum limits, nor do they imply mean or median.
Model Number ZGK-80
Performance Data  
Head configuration Pressure parallel flow
Nominal voltage/frequency 220V/50HZ
Max. Current 0.9A
Max. Power 190W
Max. Flow 80L/MIN
Max. Vacuum -90Kpa
Speed at rated load 1400RPM
Noise <52dB
Max.Pressure restart 0 PSI
Electrical Data  
Motor type[Capacitance] P.S.C(8uF)
Motor insulation class B
Thermal switch[Open temperature] Thermally protected(145°C)
Line lead wire color,gauge Brown(hot),blue(neutral),18AWG
Capacitor lead wire color,gauge Black,black,18 AWG
General Data  
Operating ambient air temperature 50° to 104°F(10° to 40°C)
Safety certification ETL
Dimension(LXWXH) 192X99X151 MM
Installation size 129X70 MM
Net weight 6.5KG
Application Medical suctions, lab,vacuum packaing etc.

Product Application

Our manufacturing process

Our Service


/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: on Line Support and Free Spare Parts
Air Flow: 80 L/Min
Vacuum: -90kpa
Noise: ≤52dB(a)
Brand Name: OEM
Voltage: 220V 50Hz
Samples:
US$ 85/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

piston vacuum pump

How Does a Piston Vacuum Pump Work?

A piston vacuum pump, also known as a reciprocating vacuum pump, operates using a piston mechanism to create a vacuum. Here’s a detailed explanation of its working principle:

1. Piston and Cylinder Assembly:

– A piston vacuum pump consists of a piston and cylinder assembly.

– The piston is a movable component that fits inside the cylinder and creates a seal between the piston and cylinder walls.

2. Intake and Exhaust Valves:

– The cylinder has two valves: an intake valve and an exhaust valve.

– The intake valve allows gas or air to enter the cylinder during the suction stroke, while the exhaust valve allows the expelled gas to exit during the compression stroke.

3. Suction Stroke:

– During the suction stroke, the piston moves downward, creating a vacuum within the cylinder.

– As the piston moves down, the intake valve opens, allowing gas or air from the system being evacuated to enter the cylinder.

– The volume within the cylinder increases, causing a decrease in pressure and the creation of a partial vacuum.

4. Compression Stroke:

– After the suction stroke, the piston moves upward during the compression stroke.

– As the piston moves up, the intake valve closes, preventing backflow of gas into the evacuated system.

– Simultaneously, the exhaust valve opens, allowing the gas trapped in the cylinder to be expelled.

– The upward movement of the piston reduces the volume within the cylinder, compressing the gas and increasing its pressure.

5. Expulsion of Gas:

– Once the compression stroke is complete, the gas is expelled through the exhaust valve.

– The exhaust valve then closes, ready for the next suction stroke.

– This process of alternating suction and compression strokes continues, gradually reducing the pressure within the evacuated system.

6. Lubrication:

– Piston vacuum pumps require lubrication for smooth operation and to maintain the airtight seal between the piston and cylinder walls.

– Lubricating oil is often introduced into the cylinder to provide lubrication and help maintain the seal.

– The oil also helps to cool the pump by dissipating heat generated during operation.

7. Applications:

– Piston vacuum pumps are commonly used in applications where high vacuum levels and low flow rates are required.

– They are suitable for processes such as laboratory work, vacuum drying, vacuum filtration, and other applications that require moderate vacuum levels.

In summary, a piston vacuum pump operates by creating a vacuum through the reciprocating motion of a piston within a cylinder. The suction stroke creates a vacuum by lowering the pressure within the cylinder, while the compression stroke expels the gas and increases its pressure. This cyclic process continues, gradually reducing the pressure within the system being evacuated. Piston vacuum pumps are commonly used in various applications that require moderate vacuum levels and low flow rates.

piston vacuum pump

Can Piston Vacuum Pumps Be Used in Medical or Pharmaceutical Applications?

Yes, piston vacuum pumps can be used in medical and pharmaceutical applications. Here’s a detailed explanation:

– Piston vacuum pumps are versatile and widely used in various industries, including medical and pharmaceutical sectors.

– Medical and pharmaceutical applications often require vacuum technology for processes such as filtration, degassing, drying, and sample preparation.

– Piston vacuum pumps offer several advantages that make them suitable for these applications:

– High Vacuum Levels: Piston pumps can achieve high vacuum levels, which are often necessary in medical and pharmaceutical processes that require precise control and removal of gases or vapors.

– Contamination-Free Operation: Piston pumps can provide contamination-free operation, making them suitable for applications where maintaining a sterile or clean environment is crucial, such as in pharmaceutical manufacturing or medical research laboratories.

– Oil-Free Operation: Some piston vacuum pumps are designed to operate without oil lubrication. Oil-free pumps eliminate the risk of oil contamination in sensitive medical or pharmaceutical processes and avoid the need for oil changes or maintenance associated with oil-lubricated pumps.

– Quiet Operation: Piston pumps can be engineered to operate with reduced noise levels, which is advantageous in medical and pharmaceutical settings where a quiet working environment is desired.

– Durability and Reliability: Piston pumps are known for their robust construction and durability, allowing them to withstand demanding applications and provide reliable performance over extended periods.

– Compact Size: Piston vacuum pumps are available in compact designs, making them suitable for applications where space is limited, such as in medical devices or portable pharmaceutical equipment.

– Some specific medical and pharmaceutical applications where piston vacuum pumps are commonly used include:

– Vacuum Filtration: Piston pumps are used to generate the necessary vacuum for filtering solutions or suspensions in laboratory or industrial settings. This process is often employed in pharmaceutical research, production of vaccines, or purification of drugs.

– Freeze Drying: Piston vacuum pumps assist in the freeze-drying process, which is a common technique used in the pharmaceutical industry to preserve and stabilize sensitive drugs or biological samples.

– Vacuum Packaging: Piston pumps are utilized for creating a vacuum in packaging processes where maintaining product quality and extending shelf life are critical, such as in the pharmaceutical packaging of medicines or medical devices.

– Laboratory Evaporation: Piston vacuum pumps are employed in laboratory applications for the evaporation of solvents or liquids in medical or pharmaceutical research, drug development, or quality control processes.

– It is important to select the appropriate piston vacuum pump model based on the specific requirements of the medical or pharmaceutical application. Factors to consider include vacuum level needed, flow rate, compatibility with the handled substances, and compliance with industry regulations and standards.

– Additionally, compliance with Good Manufacturing Practices (GMP) and other regulatory guidelines is crucial when using piston vacuum pumps in medical or pharmaceutical applications to ensure product safety, quality, and regulatory compliance.

In summary, piston vacuum pumps are suitable for use in medical and pharmaceutical applications due to their ability to achieve high vacuum levels, provide contamination-free and oil-free operation, offer quiet and reliable performance, and accommodate compact design requirements. They are commonly used in processes such as vacuum filtration, freeze drying, vacuum packaging, and laboratory evaporation in these industries.

piston vacuum pump

Are There Oil-Free Piston Vacuum Pump Options Available?

Yes, there are oil-free piston vacuum pump options available. Here’s a detailed explanation:

1. Oil-Free Technology:

– Traditional piston vacuum pumps use oil as a lubricant and sealant in their operation.

– However, advancements in vacuum pump technology have led to the development of oil-free piston vacuum pumps.

– Oil-free piston pumps are designed to operate without the need for lubricating oil, eliminating the risk of oil contamination and the need for oil changes.

2. Dry Running Operation:

– Oil-free piston vacuum pumps achieve lubrication and sealing through alternative means.

– They often utilize materials such as self-lubricating polymers or advanced coatings on the piston and cylinder surfaces.

– These materials reduce friction and provide sufficient sealing to maintain vacuum levels without the need for oil.

3. Applications:

– Oil-free piston vacuum pumps are suitable for a wide range of applications where oil contamination is a concern.

– They are commonly used in industries such as food and beverage, pharmaceutical, electronics, laboratories, and medical where a clean and oil-free vacuum environment is required.

4. Advantages:

– The primary advantage of oil-free piston vacuum pumps is their ability to provide a clean and oil-free vacuum.

– They eliminate the risk of oil contamination, which is crucial in sensitive applications such as semiconductor manufacturing or pharmaceutical production.

– Oil-free pumps also simplify maintenance since there is no need for oil changes or regular oil monitoring.

5. Considerations:

– While oil-free piston vacuum pumps offer advantages, they also have some considerations to keep in mind.

– They may have slightly lower ultimate vacuum levels compared to oil-lubricated pumps.

– The absence of oil as a lubricant may result in slightly higher operating temperatures and increased wear on piston and cylinder surfaces.

– It’s important to select an oil-free piston vacuum pump that is suitable for the specific application requirements and consider the trade-offs between performance, cost, and maintenance.

6. Alternative Pump Technologies:

– In some cases, where oil-free operation is critical or specific vacuum levels are required, alternative pump technologies may be more suitable.

– Dry screw pumps, claw pumps, or scroll pumps are examples of oil-free pump technologies that are widely used in various industries.

– These pumps offer oil-free operation, high pumping speeds, and can achieve lower vacuum levels compared to oil-free piston pumps.

In summary, oil-free piston vacuum pumps are available as an alternative to traditional oil-lubricated pumps. They provide a clean and oil-free vacuum environment, making them suitable for applications where oil contamination is a concern. However, it’s important to consider specific application requirements and explore alternative pump technologies if necessary.

China best -90kpa 80lpm Medical Use Silent Piston Air Vacuum Pump   manufacturer China best -90kpa 80lpm Medical Use Silent Piston Air Vacuum Pump   manufacturer
editor by Dream 2024-04-26

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *