China Hot selling Professional Mini Portable Piston Home Use Oil Less Vacuum Pump vacuum pump distributors

Product Description

Professional Mini portable piston home use oil less vacuum pump

Advantages:
Oil-less Vacuum Pumps / Air Compressors

PRANSCH oil-less rocking piston pump and air compressor combines the best characteristics of traditional piston pumps(air compressor) and diaphragm pumps into small units with excellent features.

  1. Light weight and very portable
  2. Durable and near ZERO maintenance
  3. Thermal protection (130 deg C)
  4. Power cord with plug, 1m length
  5. Shock mount
  6. Silencer – muffler
  7. Stainless steel vacuum and pressure gauge, both with oil damping
  8. Two stainless steel needle valves each with lock nut.
  9. All nickel plated fittings
  10. Power supply 230V, 50/60 Hz

This series is ideal for use in applications where oil-mist is undesirable. For examples, pressure/vacuum filtration, air sampling, water aeration, flame photometer, etc.

Specification:

Model Frequency Flow Pressure Power Speed Current Voltage Heat Sound Weight Hole Installation Dimensions
Hz L/min Kpa Kw Min-1 A V 0 C db(A) Kg MM MM
PM200V 50 33 -84 0.10  1380 0.45  210/235 5-40 48 1.8  5 L100xW74
60 50 -84 0.12 1450 0.90  110/125 5-40 48 1.8  5
PM300V 50 66 -86 0.12 1380 0.56  210/235 5-40 50 3.2  6 L118xW70
60 75 -86 0.14 1450 1.13  110/125 5-40 50 3.2  6
PM400V 50 80 -92 0.32 1380 0.95  210/235 5-40 56 6.0  6 L153xW95
60 92 -92 0.36 1450 1.91  110/125 5-40 56 6.0  6
PM550V 50 100 -92 0.32 1380 1.50  210/235 5-40 56 6.0  6 L148xW83
60 110 -92 0.36 1450 3.10  110/125 5-40 56 6.0  6
PM1400V 50 166 -92 0.45 1380 1.90  210/235 5-40 58 8.5  6 L203xW86
60 183 -92 0.52 1450 4.10  110/125 5-40 58 8.5  6
PM2000V 50 216 -92 0.55 1380 2.50  210/235 5-40 60 9.0  6 L203xW86
60 250 -92 0.63 1450 5.20  110/125 5-40 60 9.0  6
HP2400V 50 225 -94 0.90  1380 3.30  210/235 5-40 75 17.0  7 L246xW127
60 258 -94 1.10  1450 6.90  110/125 5-40 75 17.0  7
PM3000V 50 230 -94 1.10  1380 4.20  210/235 5-40 76 17.5  7 L246xW127
60 266 -94 1.30  1450 8.50  110/125 5-40 76 17.5  7

Why use a Rocking Piston Product?
Variety
Pransch oilless Rocking Piston air compressors and vacuum pumps, available in single, twin, miniature, and tankmounted
styles, are the perfect choice for hundreds of applications. Choose from dual frequency, shaded pole,
and permanent split capacitor (psc) electric motors with AC multi-voltage motors to match North American,
European, and CZPT power supplies. A complete line of recommended accessories as well as 6, 12, and
24 volt DC models in brush and brushless types are also available.

Performance
The rocking piston combines the best characteristics of piston and diaphragm air compressors into a small unit
with exceptional performance. Air flow capabilities from 3.4 LPM to 5.5 CFM (9.35 m3/h), pressure to 175 psi
(12.0 bar) and vacuum capabilities up to 29 inHg (31 mbar). Horsepowers range from 1/20 to 1/2 HP
(0.04 to 0.37 kW).

Reliable
These pumps are made to stand up through years of use. The piston rod and bearing assembly are bonded
together, not clamped; they will not slip, loosen, or misalign to cause trouble.

Clean Air
Because CZPT pumps are oil-free, they are ideal for use in applications in laboratories, hospitals, and the
food industry where oil mist contamination is undesirable.

Application:

  1. Transportation application include:Auto detailing Equipment,Braking Systems,Suspension Systems,Tire Inflators
  2. Food and Beverage application include:beverage dispensing,coffee and Espresso equipment,Food processing and packaging,Nitrogen Generation
  3. Medical and laboratory application include:Body fluid Analysis equipment,Dental compressors and hand tools,dental vacuum ovens,Dermatology equipment,eye surgery equipment,lab automation,Liposuction equipment,Medical aspiration,Nitrogen Generation,Oxygen concentrators,Vacuum Centrifuge,vacuum filtering,ventilators
  4. General industrial application include:Cable pressurization,core drilling
  5. Environmental application include:Dry sprinkler systems,Pond Aeration,Refrigerant Reclamation,Water Purification Systems
  6. Printing and packaging application include:vacuum frames
  7. material Handling application include:vacuum mixing

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Oil or Not: Oil Free
Structure: Reciprocating Vacuum Pump
Exhauster Method: Positive Displacement Pump
Vacuum Degree: High Vacuum
Work Function: Mainsuction Pump
Working Conditions: Dry
Customization:
Available

|

piston vacuum pump

How Does a Piston Vacuum Pump Work?

A piston vacuum pump, also known as a reciprocating vacuum pump, operates using a piston mechanism to create a vacuum. Here’s a detailed explanation of its working principle:

1. Piston and Cylinder Assembly:

– A piston vacuum pump consists of a piston and cylinder assembly.

– The piston is a movable component that fits inside the cylinder and creates a seal between the piston and cylinder walls.

2. Intake and Exhaust Valves:

– The cylinder has two valves: an intake valve and an exhaust valve.

– The intake valve allows gas or air to enter the cylinder during the suction stroke, while the exhaust valve allows the expelled gas to exit during the compression stroke.

3. Suction Stroke:

– During the suction stroke, the piston moves downward, creating a vacuum within the cylinder.

– As the piston moves down, the intake valve opens, allowing gas or air from the system being evacuated to enter the cylinder.

– The volume within the cylinder increases, causing a decrease in pressure and the creation of a partial vacuum.

4. Compression Stroke:

– After the suction stroke, the piston moves upward during the compression stroke.

– As the piston moves up, the intake valve closes, preventing backflow of gas into the evacuated system.

– Simultaneously, the exhaust valve opens, allowing the gas trapped in the cylinder to be expelled.

– The upward movement of the piston reduces the volume within the cylinder, compressing the gas and increasing its pressure.

5. Expulsion of Gas:

– Once the compression stroke is complete, the gas is expelled through the exhaust valve.

– The exhaust valve then closes, ready for the next suction stroke.

– This process of alternating suction and compression strokes continues, gradually reducing the pressure within the evacuated system.

6. Lubrication:

– Piston vacuum pumps require lubrication for smooth operation and to maintain the airtight seal between the piston and cylinder walls.

– Lubricating oil is often introduced into the cylinder to provide lubrication and help maintain the seal.

– The oil also helps to cool the pump by dissipating heat generated during operation.

7. Applications:

– Piston vacuum pumps are commonly used in applications where high vacuum levels and low flow rates are required.

– They are suitable for processes such as laboratory work, vacuum drying, vacuum filtration, and other applications that require moderate vacuum levels.

In summary, a piston vacuum pump operates by creating a vacuum through the reciprocating motion of a piston within a cylinder. The suction stroke creates a vacuum by lowering the pressure within the cylinder, while the compression stroke expels the gas and increases its pressure. This cyclic process continues, gradually reducing the pressure within the system being evacuated. Piston vacuum pumps are commonly used in various applications that require moderate vacuum levels and low flow rates.

piston vacuum pump

Are There Noise Considerations When Using Piston Vacuum Pumps?

Yes, there are noise considerations to take into account when using piston vacuum pumps. Here’s a detailed explanation:

– Piston vacuum pumps can generate noise during their operation, which is important to consider, especially in environments where noise levels need to be minimized.

– The noise produced by piston vacuum pumps is primarily caused by mechanical vibrations and the movement of internal components.

– The noise level can vary depending on factors such as the design and construction of the pump, the speed of operation, and the load conditions.

– Excessive noise from piston vacuum pumps can have several implications:

– Occupational Health and Safety: High noise levels can pose a risk to the health and safety of operators and personnel working in the vicinity of the pump. Prolonged exposure to loud noise can lead to hearing damage and other related health issues.

– Environmental Impact: In certain settings, such as residential areas or noise-sensitive locations, excessive noise from piston vacuum pumps may result in noise pollution and non-compliance with local noise regulations.

– Equipment Interference: Noise generated by the pump can interfere with the operation of nearby sensitive equipment, such as electronic devices or precision instruments, potentially affecting their performance.

– To mitigate the noise produced by piston vacuum pumps, several measures can be taken:

– Enclosures and Sound Insulation: Installing acoustic enclosures or sound-insulating materials around the pump can help contain and reduce the noise. These enclosures are designed to absorb or block the sound waves generated by the pump.

– Vibration Isolation: Using vibration isolation mounts or pads can help minimize the transmission of vibrations from the pump to surrounding structures, reducing the noise level.

– Maintenance and Lubrication: Regular maintenance, including lubrication of moving parts, can help reduce friction and mechanical noise generated by the pump.

– Operating Conditions: Adjusting the operating conditions of the pump, such as speed and load, within the manufacturer’s specified limits can help optimize performance and minimize noise generation.

– Location and Placement: Proper positioning and placement of the pump, considering factors such as distance from occupied areas or sensitive equipment, can help minimize the impact of noise.

– It is important to consult the manufacturer’s guidelines and recommendations regarding noise levels and any specific measures to mitigate noise for a particular piston vacuum pump model.

– Compliance with local regulations and standards regarding noise emissions should also be considered and adhered to.

In summary, noise considerations are important when using piston vacuum pumps to ensure the health and safety of personnel, minimize environmental impact, and prevent interference with other equipment. Measures such as enclosures, vibration isolation, maintenance, and proper operating conditions can help mitigate the noise generated by these pumps.

piston vacuum pump

Can Piston Vacuum Pumps Handle Corrosive Gases or Vapors?

Piston vacuum pumps are generally not suitable for handling corrosive gases or vapors. Here’s a detailed explanation:

1. Construction Materials:

– Piston vacuum pumps are typically constructed with materials such as cast iron, aluminum, stainless steel, and various elastomers.

– While these materials offer good resistance to normal operating conditions, they may not be compatible with corrosive substances.

– Corrosive gases or vapors can attack and degrade the pump’s internal components, leading to reduced performance, increased wear, and potential failure.

2. Sealing and Contamination:

– Piston vacuum pumps rely on tight seals and clearances to maintain the vacuum and prevent leakage.

– Corrosive gases or vapors can degrade the seals and compromise their effectiveness.

– This can result in increased leakage, reduced pumping efficiency, and potential contamination of the pump and the surrounding environment.

3. Maintenance and Service:

– Handling corrosive gases or vapors requires specialized knowledge, materials, and maintenance procedures.

– The pump may need additional protective measures, such as corrosion-resistant coatings or specialized seal materials, to withstand the corrosive environment.

– Regular inspection, cleaning, and replacement of components may also be necessary to maintain the pump’s performance and prevent damage.

4. Alternative Pump Options:

– If corrosive gases or vapors are involved in the application, it is advisable to consider alternative pump technologies that are specifically designed to handle such substances.

– For corrosive gases, chemical-resistant pumps like diaphragm pumps, peristaltic pumps, or dry screw pumps may be more suitable.

– These pumps are constructed with materials that offer superior resistance to corrosion and can handle a wide range of corrosive substances.

– It is essential to consult the pump manufacturer or a vacuum system specialist to select the appropriate pump for handling corrosive gases or vapors.

In summary, piston vacuum pumps are generally not recommended for handling corrosive gases or vapors due to their construction materials, sealing limitations, and the potential for damage and contamination. It is crucial to choose a pump specifically designed to handle corrosive substances or consider alternative pump technologies that can provide the required chemical resistance and performance.

China Hot selling Professional Mini Portable Piston Home Use Oil Less Vacuum Pump   vacuum pump distributorsChina Hot selling Professional Mini Portable Piston Home Use Oil Less Vacuum Pump   vacuum pump distributors
editor by CX 2024-04-04

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *