China best Cyyp 61 Uninterrupted Service Large Flow and High Pressure LNG Liquid Oxygen Nitrogen Argon Multiseriate Piston Pump vacuum pump connector

Product Description

Cyyp 61 Uninterrupted Service Large Flow and High Pressure LNG Liquid Oxygen Nitrogen Argon Multiseriate Piston Pump

Product Description:
1.Electromagnetic speed adjustment motor/frequency conversion motor/fixed speed motor
2.Overpressure interlocking device Safety valve/Cryogenic check valve 
3.Temperature interlocking device inside pump
4. Pressure interlocking device of outlet liquid

Featuring:
1.Module design, wide coverage of flow
2.Simple design of pump head parts, convenient for maintenance
3.Reliable structure of sealing
4.Optional gas auxiliary sealing device, further increase the seal life
5.Various configurations improve the degree of safety and automation

Application:
1.LO2,LN2,LAr,LNG
2.Gas supply systems of large and medium-size steel mill, chemical factory
3.Cylinder filling
4.Tank filling
5.Other medium pressure gas supply system

Optional Configuration:
1.Electromagnetic speed adjustment motor/frequency conversion motor/fixed speed motor
2.Overpressure interlocking device Safety valve/Cryogenic check valve 
3.Temperature interlocking device inside pump
4.Pressure interlocking device of outlet liquid
 

Model   medium   Flow(L/h) Max outlet pressure(Mpa) Inlet pressure (Mpa) Motor Power
BP20-60/165 LOX,LIN,LAr 20-60 16.5 0.02-0.6 3KW
BP30-80/165 30-80 16.5 0.02-0.6 3KW
BP60-250/165 60-250 16.5 0.02-0.6 5.5KW
BP1
 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Max.Head: 110m-150m
Max.Capacity: 50-100 L/min
Driving Type: Motor
Impeller Number: Single-Stage Pump
Working Pressure: Middle Pressure Pump
Influent Type of Impeller: Single Suction Pump
Customization:
Available

|

piston vacuum pump

What Are the Key Components of a Piston Vacuum Pump?

A piston vacuum pump consists of several key components that work together to create a vacuum. Here’s a detailed explanation of these components:

1. Cylinder:

– The cylinder is a cylindrical chamber where the piston moves back and forth.

– It provides the housing for the piston and plays a crucial role in creating the vacuum by changing the volume of the chamber.

2. Piston:

– The piston is a movable component that fits inside the cylinder.

– It creates a seal between the piston and cylinder walls, allowing the pump to create a pressure differential and generate a vacuum.

– The piston is typically driven by a motor or an external power source.

3. Intake Valve:

– The intake valve allows gas or air to enter the cylinder during the suction stroke.

– It opens when the piston moves downward, creating a vacuum and drawing gas into the cylinder from the system being evacuated.

4. Exhaust Valve:

– The exhaust valve allows the expelled gas to exit the cylinder during the compression stroke.

– It opens when the piston moves upward, allowing the compressed gas to be expelled from the cylinder.

5. Lubrication System:

– Piston vacuum pumps often incorporate a lubrication system to ensure smooth operation and maintain an airtight seal between the piston and cylinder walls.

– Lubricating oil is introduced into the cylinder to provide lubrication and help maintain the seal.

– The lubrication system also helps to cool the pump by dissipating heat generated during operation.

6. Cooling System:

– Some piston vacuum pumps may include a cooling system to prevent overheating.

– This can involve the circulation of a cooling fluid or the use of cooling fins to dissipate heat generated during operation.

7. Pressure Gauges and Controls:

– Pressure gauges are often installed to monitor the vacuum level or pressure within the system.

– Control mechanisms, such as switches or valves, may be present to regulate the operation of the pump or maintain the desired vacuum level.

8. Motor or Power Source:

– The piston in a piston vacuum pump is typically driven by a motor or an external power source.

– The motor provides the necessary mechanical energy to move the piston back and forth, creating the suction and compression strokes.

9. Frame or Housing:

– The components of the piston vacuum pump are housed within a frame or housing that provides structural support and protection.

– The frame or housing also helps to reduce noise and vibration during operation.

In summary, the key components of a piston vacuum pump include the cylinder, piston, intake valve, exhaust valve, lubrication system, cooling system, pressure gauges and controls, motor or power source, and the frame or housing. These components work together to create a vacuum by reciprocating the piston within the cylinder, allowing gas to be drawn in and expelled, while maintaining an airtight seal. The lubrication and cooling systems, as well as pressure gauges and controls, ensure smooth and efficient operation of the pump.

piston vacuum pump

How Does the Cost of Piston Vacuum Pumps Compare to Other Types?

The cost of piston vacuum pumps can vary depending on factors such as the pump’s size, capacity, features, and the specific manufacturer or supplier. Here’s a detailed explanation of how the cost of piston vacuum pumps compares to other types:

– Piston vacuum pumps generally fall into the mid to high range in terms of cost compared to other types of vacuum pumps.

– Compared to rotary vane pumps, which are another common type of vacuum pump, piston pumps are often more expensive.

– This higher cost can be attributed to several factors:

– Design and Construction: Piston vacuum pumps typically have a more complex design and construction, involving precision machining and tighter tolerances. This can contribute to higher manufacturing costs.

– Performance and Features: Piston pumps often offer higher performance and greater pumping capacity compared to other types of pumps. They may also incorporate additional features such as variable speed control or advanced control systems, which can increase the cost.

– Robustness and Durability: Piston pumps are known for their durability and ability to handle demanding applications. They are designed to withstand high pressures and heavy-duty operation, which can contribute to their higher cost.

– On the other hand, when compared to more specialized or advanced vacuum pump technologies such as turbomolecular pumps or cryogenic pumps, piston vacuum pumps are generally more cost-effective.

– Turbomolecular pumps, which are used in high-vacuum applications, are typically more expensive due to their complex design, high rotational speeds, and advanced materials used.

– Cryogenic pumps, which rely on extremely low temperatures for vacuum creation, are also typically more expensive due to the specialized cooling systems and cryogenic components involved.

– It’s important to note that the cost of any vacuum pump can also vary depending on factors such as the required pumping capacity, ultimate vacuum level, and specific industry or application requirements.

– When considering the cost of a piston vacuum pump, it is crucial to assess the overall value it provides in terms of performance, reliability, durability, and suitability for the intended application.

– Additionally, factors such as maintenance requirements, energy efficiency, and the availability of spare parts and service support should also be taken into account when evaluating the cost-effectiveness of a piston vacuum pump.

In summary, piston vacuum pumps generally fall into the mid to high range in terms of cost compared to other types of vacuum pumps. While they may be more expensive than rotary vane pumps, they are often more cost-effective compared to specialized technologies such as turbomolecular pumps or cryogenic pumps. The specific cost of a piston vacuum pump can vary based on factors such as size, capacity, features, and manufacturer.

piston vacuum pump

Are Piston Vacuum Pumps Suitable for Laboratory Use?

Yes, piston vacuum pumps are commonly used and well-suited for laboratory applications. Here’s a detailed explanation:

1. Versatility:

– Piston vacuum pumps offer versatility and can be utilized in a wide range of laboratory processes and equipment.

– They are compatible with various laboratory applications such as vacuum ovens, freeze dryers, vacuum filtration systems, and rotary evaporators.

2. Vacuum Generation:

– Piston vacuum pumps are capable of generating and maintaining deep vacuum levels, making them suitable for laboratory use.

– They can achieve vacuum levels ranging from millitorr (10-3 Torr) to microns (10-6 Torr), depending on the specific pump design and operating conditions.

3. Control and Precision:

– Piston vacuum pumps provide precise control over the vacuum level, allowing researchers to create and maintain the desired pressure conditions in their experiments.

– The pumps offer fine-tuning capabilities to achieve the optimal vacuum level required for specific laboratory processes.

4. Reliability and Durability:

– Piston vacuum pumps are known for their reliability and durability, which are crucial factors in laboratory environments.

– They are designed to withstand continuous operation and frequent use, ensuring consistent performance over extended periods.

5. Low Contamination Risk:

– Piston vacuum pumps are designed with airtight seals that minimize the risk of contamination.

– This is particularly important in laboratory settings where maintaining a clean and uncontaminated environment is vital for accurate and reliable experimental results.

6. Cost-Effective Solution:

– Piston vacuum pumps are generally more cost-effective compared to other types of vacuum pumps.

– They offer a balance between performance and affordability, making them a preferred choice for many laboratory budgets.

7. Ease of Maintenance:

– Piston vacuum pumps are relatively easy to maintain, with readily available spare parts and service support.

– Routine maintenance tasks such as changing oil, inspecting seals, and cleaning can be easily performed, ensuring the pump’s longevity and consistent performance.

In summary, piston vacuum pumps are highly suitable for laboratory use due to their versatility, ability to generate deep vacuum levels, precise control, reliability, low contamination risk, cost-effectiveness, and ease of maintenance. They are widely utilized in various laboratory applications and provide researchers with the necessary vacuum conditions for their experiments and processes.

China best Cyyp 61 Uninterrupted Service Large Flow and High Pressure LNG Liquid Oxygen Nitrogen Argon Multiseriate Piston Pump   vacuum pump connector	China best Cyyp 61 Uninterrupted Service Large Flow and High Pressure LNG Liquid Oxygen Nitrogen Argon Multiseriate Piston Pump   vacuum pump connector
editor by CX 2024-03-04

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *